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Abstract
Rationale We test methods to advance (shift earlier) circa-
dian rhythms without producing misalignment between
rhythms and sleep. We previously tested (1) a gradually
advancing sleep/dark schedule plus morning bright light
and afternoon/evening melatonin and (2) the same sleep
schedule with only morning bright light. Now we report
on the same sleep schedule with only afternoon/evening
melatonin.
Objectives This study aims to examine phase advances,
sleepiness, and performance in response to melatonin com-
pared to placebo.
Methods Twelve adults (five female individuals) aged 20–
45 years (mean ± SD028.3±7.3 years) completed this
within-subjects placebo-controlled counterbalanced study.
The participants slept on fixed 8-h sleep schedules for nine
days. Then, sleep/dark was advanced by 1 h/day for three
consecutive days of treatment. The participants took 3 mg of
melatonin or placebo 11 h before baseline sleep midpoint
(the optimal time to produce phase advances) on the first
treatment day and 1 h earlier on each subsequent day. We
measured the dim light melatonin onset before and after
treatment. The participants rated subjective symptoms
throughout the study. They completed the Psychomotor
Vigilance Task and rated sleepiness from 1 h before pill
ingestion until bedtime on each treatment day.
Results Melatonin produced significantly larger advances
(1.3±0.7 h) compared to placebo (0.7±0.7 h); however, in
the hours between melatonin ingestion and bed, melatonin
caused sleepiness and performance decrements.

Conclusions Adding afternoon/evening melatonin to the
gradually advancing sleep schedule increased the phase
advance, but given the side effects, like sleepiness, it is
better to use morning bright light and perhaps a lower dose
of melatonin.

Keywords Circadian rhythms . Melatonin . Human . Dim
light melatonin onset . Phase shift . Phase advance .

Sleepiness . Psychomotor vigilance task . Circadian
misalignment . Jet lag

Introduction

Despite an intrinsic drive promoting sleep and wakefulness,
external factors often cause humans to be awake and asleep
at inappropriate times with respect to the individual’s circa-
dian system, for example, after traveling across several time
zones or when working early morning shifts or night shifts.
Misalignment between the circadian clock and the sleep/
wake schedule (“circadian misalignment”) is associated
with sleep difficulties, decrements in daytime functioning
and mood, and gastrointestinal distress (Akerstedt 1988;
Akerstedt and Wright 2009; Boulos et al. 1995; Drake et
al. 2004; Graeber 1982; Haimov and Arendt 1999; Knutsson
2003; Waterhouse et al. 2000). Chronic circadian misalign-
ment increases the risk for long-term health consequences,
including cardiovascular (Costa 1996; Kitamura et al. 2002;
Knutsson et al. 1986; Koller 1983; Lo et al. 2008; Ohira et
al. 2000; Yamasaki et al. 1998), metabolic (Karlsson et al.
2001; Morikawa et al. 2007), reproductive (Costa 1996;
Iglesias et al. 1980), and gastrointestinal dysfunction
(Costa 1996; Knutsson and Boggild 2010; Koller 1983), as
well as cancer (Blask 2009; Erren et al. 2010; Hansen 2006;
Rafnsson et al. 2001; Reynolds et al. 2002; Viswanathan et
al. 2007) and cognitive deficits (Cho 2001). Recent findings
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suggest that for every 1 h increase in “social jet lag” (the
difference between mid-sleep time on free and work days),
the risk of obesity increases threefold (Roenneberg et al.
2012). Even short-term circadian misalignment in healthy
participants impairs metabolic responses that are risk factors
for cardiovascular disease and type II diabetes mellitus
(Hampton et al. 1996; Scheer et al. 2009).

The circadian system is capable of shifting to adjust to a
new light/dark cycle, such as after jet travel; however, the
shift is gradual, not instantaneous. Also, because most
humans have an endogenous period that is slightly longer
than 24 h (Burgess and Eastman 2008; Czeisler et al. 1999;
Eastman et al. 2012; Smith et al. 2009a; Wever 1979), we
have an innate tendency to delay (drift later). Therefore,
advancing the system (shifting it earlier) is more difficult
and typically takes longer than delaying. After flying east,
circadian rhythms need to advance to align with sleep and
wake in the new time zone. Phase advancing would also
benefit shift workers who have early morning shifts or who
want to sleep before a night shift and extreme night owls or
patients with delayed sleep phase disorder (DSPD) who
struggle to wake up for work or school.

When given exogenously in pill form, melatonin can
phase shift the circadian system. Similar to bright light,
exogenous melatonin can advance and delay the clock,
and the response can be predicted by a phase response curve
(PRC) (Burgess et al. 2008, 2010; Lewy et al. 1998).
Maximum advances are produced when 0.5 or 3.0 mg of
melatonin is taken in the afternoon/evening, 10 to 11 h
before sleep midpoint (Burgess et al. 2010). Other studies
using doses ranging from 0.05 to 8 mg have also shown that
melatonin can produce circadian phase advances when
taken in the afternoon or evening hours (Attenburrow et al.
1995; Deacon and Arendt 1995; Deacon et al. 1994;
Krauchi et al. 1997; Mallo et al. 1988; Mundey et al.
2005; Nagtegaal et al. 1998; Paul et al. 2010; Rajaratnam
et al. 2003; Samel et al. 1991; Sharkey and Eastman 2002;
Wirz-Justice et al. 2004; Yang et al. 2001). Most of these
previous studies, however, did not advance sleep/dark,
which can restrict how much the circadian system advances.
Others (Paul et al. 2010; Rajaratnam et al. 2003) did not test
a practical sleep schedule to be used in the real world; the
participants were kept in bed for 14 or 16 h after ingesting
the pill. Our laboratory uses a gradually shifting sleep/dark
schedule to phase shift rhythms (Burgess et al. 2003;
Eastman et al. 2005; Eastman and Miescke 1990; Revell et
al. 2006; Smith and Eastman 2009; Smith et al. 2009b), and
it may also reduce the degree of circadian misalignment
during treatment. Our goal is to shift circadian rhythms at
the same rate as sleep in order to keep the two aligned.
While using a sleep schedule that was advanced by 1 h/day
for 3 days, we previously tested the combination of morning
bright light and afternoon/evening melatonin (Revell et al.

2006) and morning bright light alone (Burgess et al. 2003)
to produce a phase advance. Here we report on using our
gradually advancing sleep/dark paradigm with afternoon/
evening melatonin alone.

The primary aim of this study was to examine the phase
advancing effects of a gradual advance of sleep/dark (1 h/
day) plus 3.0 mg afternoon/evening melatonin compared to
placebo. The secondary aims included: (1) to examine
whether self-reported symptoms often associated with cir-
cadian misalignment were elevated during treatment and (2)
to examine subjective sleepiness and objective performance
in the hours between ingesting melatonin and bedtime in
comparison to placebo.

Materials and methods

Participants

Fifteen healthy young adults (six female individuals) were
enrolled in a 5-week experimental protocol. Two partici-
pants (one female individual) were dropped from the study
due to non-compliance with the study protocol. One male
participant discontinued for personal reasons. Therefore, 12
participants aged 20 to 45 years (mean ± SD028.3±
7.3 years) completed the study. Data were collected during
all months of the year, except December and January at 41°
northern latitude.

The participants were free of medical and psychiatric dis-
orders as assessed by in-person interviews, the Minnesota
Multiphasic Personality Inventory-2, and part of a health
questionnaire (Tasto et al. 1978). They reported not taking
any prescription medications, except for three women who
were taking oral contraceptives. They also reported no more
than moderate alcohol (two or fewer drinks per day) and
caffeine (<300 mg per day) intake and were non-smokers.
Body mass index for all participants was <30 (mean ± SD0

23.6±3.1), and they weighed between 51 and 86 kg (mean ±
SD070.2±11.3 kg). One female participant began the study
while in the follicular phase of her menstrual cycle and
another was in the luteal phase. The three female participants
on oral contraceptives started the study while in the pseudo-
luteal phase.

Inclusion criteria included habitual sleep duration between
6.5 and 9 h per night, habitual bedtimes between 23:00 and
02:00, and habitual wake times between 07:00 and 10:00. The
participants reported no sleep problems over the proximal
month of enrollment as assessed by a Pittsburgh Sleep
Quality Index (Buysse et al. 1989) score of 5 or less and no
problems with excessive daytime sleepiness as assessed by an
Epworth Sleepiness Scale (Johns 1991) score of less than 10.
Morningness–eveningness was measured using the Horne–
Ostberg questionnaire (Horne and Östberg 1976); eight
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participants were intermediate types, three were moderate
morning types, and one was moderate evening type (mean ±
SD = 52.6 ± 7.2). The participants reported not working night
shifts or crossing more than three time zones in the month
before beginning the study.

The Rush University Medical Center Institutional
Review Board approved the study protocol, and therefore
the study was performed in accordance with the ethical
standards outlined in the 1964 Declaration of Helsinki.
Each participant gave informed consent and received mon-
etary compensation for participating.

Study design

The participants completed a 35-day within-subjects proto-
col with two conditions (3.0 mg melatonin and placebo)
counterbalanced for order. For each condition, the partici-
pants completed a 2-week protocol (see Fig. 1) with a 7-day
wash-out period in between. Each participant was given a
fixed sleep schedule to follow at home during baseline,
providing 8 h of time in bed. The sleep schedule assigned
to each participant was based on their reported average
bedtime and wake time before starting the study. The
assigned average baseline bedtime was 00:23 (SD0
1.0 h), and bedtimes ranged from 23:00 to 02:00. Thus,
the average wake time was 8:23 and ranged from 07:00
to 10:00. The participants were instructed to go to bed
and wake up within ±30 min of their assigned baseline
bedtime and wake-up time during the 7-day wash-out
period. Each morning during baseline, the participants
were required to go outside for at least 10 min during
the second hour after waking for daylight exposure. The
fixed sleep schedule and morning light was designed to
stabilize the circadian phase of the participants and ensure

that they were not sleep-deprived before the phase advancing
treatment in the laboratory. The participants slept at home on
days 1–6 and 8–10; on the other days, they slept in private
temperature-controlled bedrooms in the laboratory. The par-
ticipants lived in the laboratory from days 11 through 14.
Bedroom lights were controlled by staff members in a separate
control room. During waking hours the intensity in the bed-
rooms and adjoining hallway and bathroom was <60 lx.

The participants were permitted to consume caffeine (up to
100 mg) during the first 3 h of wake on baseline days 1–3. A
maximum of two standard alcoholic drinks were permitted on
Fridays and Saturdays (days 1, 2, 8, and 9) of the study. The
participants were tested for alcohol using a breathalyzer each
time they came to the laboratory. Caffeine and alcohol were
permitted during the wash-out period, but the participants were
asked to consume these substances in moderation. Non-
steroidal anti-inflammatory drugs were not permitted during
the entire study as these drugs suppress melatonin (Murphy et
al. 1996). Recreational drugs and tobacco were prohibited
throughout the study, and all participants were screened for
common drugs of abuse when they started the study.

Procedures

Exogenous melatonin treatment

Participants were given either 3.0 mg melatonin or matching
placebo (Ecological Formulas, Cardiovascular Research
Ltd., Concord, CA, USA) on each treatment day. Pill admin-
istration was double-blind. The participants did not eat or
drink anything 2 h before until 30 min after ingesting the
pills. They provided saliva samples at 1 and 2 h after pill
ingestion to confirm that melatonin pills were correctly
administered. These samples were later assayed for
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Fig. 1 The 2-week protocol plotted relative to baseline bedtime, which
was assigned based on the individual’s habitual sleep schedule. The
participants completed this protocol twice—once with melatonin and
once with placebo—in a counterbalanced order. The protocol has two
parts, baseline days (days 1–10) and treatment days (days 11–13). Days
11–13 are referred to as treatment days 1–3 in most of the text and
figures. Horizontal lines with dots on the ends illustrate sleep/dark

times, which were advanced 1 h/day during treatment days. During
phase assessments, saliva was sampled every 30 min in dim light to
determine the dim light melatonin onset. The phase assessments were
timed according to the assigned baseline sleep schedule. Melatonin or
placebo pills (illustrated by an X) were given 11 h before baseline sleep
midpoint (7 h before baseline bedtime) on the first treatment day and
then 1 h earlier on each treatment day
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melatonin concentration. Six participants received melato-
nin first and six received melatonin second.

On the first treatment day, we administered the 3.0-mg dose
of melatonin 11 h before the participant’s baseline mid-sleep
time to obtain the largest phase advance as predicted by the
3.0-mg PRC (Burgess et al. 2010). The timing of the pills was
advanced by 1 h each day because theoretically the circadian
system is advancing each day; timing the dose earlier each day
increased the likelihood that exogenous melatonin continued
to fall near the optimal time of the melatonin PRC. We
did not administer melatonin according to body weight
because this is not the way it is sold to consumers. The
weights of our participants ranged from 51 to 86 kg; thus,
the doses ranged from 0.035 to 0.059 mg/kg.

Dim light melatonin onset phase assessments

Endogenous salivary melatonin concentration was measured
from approximately 2 mL of saliva collected every 30 min
using Salivettes (Starstedt, Nümbrecht, Germany). Saliva
collection for the baseline phase assessment began 7 h
before until 3 h after the assigned baseline bedtime and for
the final phase assessment at 10 h before until 2 h after
baseline bedtime. The participants remained awake in dim
light (<5 lx), sitting in comfortable recliners. Each sample
was immediately centrifuged to extract saliva and then fro-
zen. Saliva samples were later radioimmunoassayed for
melatonin concentration (Pharmasan Labs, Inc. Osceola,
WI, USA). An individual’s samples were analyzed in the
same batch. The sensitivity of the assay was between 0.7
and 1 pg/mL. The intra-assay coefficient of variation for low
daytime levels of salivary melatonin was 12 %. The inter-
assay coefficients of variation for low daytime levels of
salivary melatonin ranged from 13.2 to 15.9 %.

Sleep and ambient light monitoring

The participants completed daily sleep logs on a personal
data assistant (PDA; palmOne, Tungsten E2), where they
recorded bedtime, estimated sleep onset time, night time
awakenings >5 mins, final wake time, and the time they
got out of bed. They wore activity monitors (Actiwatch-L,
Philips Respironics, Inc., Bend OR, USA) on their dominant
wrist, which may distinguish sleep from quiet waking better
than when worn on the non-dominant wrist. They also wore
an Actiwatch with photosensor, but without the wrist band,
around their necks as a medallion (Actiwatch-L, Philips
Respironics, Inc., Bend OR, USA) to measure compliance
to the 10-min outdoor morning light requirement. Wrist
activity data were collected in 30-s epochs using medium
sensitivity. When sleeping at home, they called the labora-
tory’s time-stamped voice mail system at bedtime and wake-
up time. Activity and light data with the daily logs were

reviewed with the participants every 2 to 3 days at the
laboratory to verify compliance.

Subjective symptoms

Within 30 min of scheduled bedtime on baseline and treat-
ment days, the participants completed the Columbia Jet Lag
Scale (Spitzer et al. 1999), which asked them to rate how
they felt throughout the entire day. Also throughout the
study, the participants completed the Stanford Sleepiness
Scale (SSS) (Hoddes et al. 1973) and the “How Are You
Feeling Right Now” (HAYFRN) questionnaire (both promp-
ted by pre-programmed alarms) on the PDA four times per
day: 0.5 and 5.5 h after waking and 6 and 1 h before bed. The
SSS is a seven-point Likert Scale with the following anchored
descriptions: 1 0 feeling active and vital; alert, wide awake; 2
0 functioning at high level, but not at peak; able to concen-
trate; 3 0 relaxed; awake; not at full alertness; responsive; 4 0
a little foggy; not at peak; let down; 5 0 fogginess; beginning
to lose interest in remaining awake; slowed down; 6 0 sleepi-
ness; prefer to be lying down; fighting sleep; woozy; and 7 0

almost in reverie; sleep onset soon; must struggle to remain
awake. The “HAYFRN” questionnaire included six questions
to assess current symptoms (physical fatigue, mental fatigue,
sadness, anxiety, irritability, and gastrointestinal distress) on a
scale from 1 (“very little”) to 10 (“very much”).

On treatment days, the participants also rated their sleepi-
ness using the SSS (Hoddes et al. 1973) and the Karolinska
Sleepiness Scales (KSS) (Akerstedt and Gillberg 1990) once
per hour beginning at 1 h before taking the pill until bed-
time. The KSS is a nine-point verbally anchored scale with
the following anchored steps: 1 0 extremely alert, 3 0 alert,
5 0 neither alert nor sleepy, 7 0 sleepy, but no difficulty
remaining awake, and 9 0 extremely sleepy, fighting sleep.
The points in between had a scale value but no verbal cue.

Psychomotor vigilance task

The Psychomotor Vigilance Task (PVT) is a test of sus-
tained attention, and performance on this test shows mini-
mal learning effects in adults (Dinges et al. 1997). The
participants completed the PVT on the PDA on treatment
days every hour beginning at 1 h before taking the pill until
bedtime. They completed the PVT during baseline and twice
on each treatment day before these hourly tests to overcome
any potential practice effects. The Palm-based vigilance task
(PalmPVT©), developed by the Walter Reed Army Institute
of Research,1 is modeled after the original laboratory-based

1 WRAIR Test Battery and Palm-PVT task design by D. Thorne, Palm
& PC programs by J. Shapiro, contract technical support by D.
Redmond, project concept by G. Belenky.

828 Psychopharmacology (2013) 225:825–837

Author's personal copy



PVT (Dinges and Powell 1985). The general pattern of
responses on the PalmPVT tracks that of the original
laboratory-based PVT during baseline periods, and when
wakefulness is extended to 28 h (Lamond et al. 2005),
40 h (Thorne et al. 2005), and 62 h (Lamond et al. 2008).
The participants responded to a visual stimulus (bull’s-eye)
as quickly as possible by pressing a designated button on the
device with the dominant thumb, after which their reaction
time in milliseconds appeared on the screen. PDAs were
initialized at the laboratory using the PalmPVT© (version
2.0.1) software. Test settings included the following: a 5-
min testing session, immediate feedback of reaction time in
milliseconds after each stimulus was presented, and a
random inter-stimulus time interval ranging from 1 to
5 s. The following three outcome variables derived from
the PalmPVT assessed slowing and variability in per-
formance: median reaction time (RT), mean optimal RT
(mean of the 10 % fastest RTs), and lapses (number of
responses >500 ms).

Data and statistical analysis

Dim light melatonin onset

The raw melatonin curves were smoothed using a locally
weighted least squares curve (LOWESS) generated using
Prism software (GraphPad, Inc., San Diego CA, USA). The
threshold for each phase assessment was the minimum of
the fitted curve plus 25 % of the distance from the fitted
minimum to the fitted maximum. Then, the two thresholds
within each condition were averaged. The dim light mela-
tonin onset (DLMOs) were the clock time at which the
smoothed curves crossed this averaged threshold. The aver-
age (± SD) DLMO threshold across all participants and
across both conditions was 10.37 (±2.27) pg/mL. The phase
shift is the baseline DLMO minus the final DLMO; by
convention, phase advances are positive numbers and phase
delays are negative numbers.

A two (condition: melatonin vs. placebo)-by-two (time:
baseline vs. final phase assessment) repeated-measures
ANOVA was computed to determine whether the DLMO
shifted more with melatonin than with placebo.

Actigraphically estimated sleep

Wrist activity data were analyzed using the Actiware 5
software (version 5.59, Respironics, Inc., Bend, OR, USA)
to estimate sleep/wake (medium threshold). Each sleep ep-
isode was inspected within a rest interval beginning with the
participants’ reported bedtime and ending with their
reported wake up time on their daily sleep log. The follow-
ing variables were derived: sleep onset time, wake time, and
total sleep time.

Subjective symptoms: baseline vs. treatment days

Subjective symptoms were analyzed from the SSS and
HAYFRN questionnaires and from the Columbia Jet Lag
Scale. Subjective ratings on days 2–6 were averaged to
define baseline.

To examine how the ratings on the SSS and HAYFRN
questionnaires changed across four times of a day and to
determine whether these changes differed between baseline
and treatment days, we computed three (condition: baseline
vs. placebo vs. melatonin)-by-four (time of day: after wake vs.
morning/afternoon vs. afternoon/evening vs. before bed)
repeated-measures ANOVAs. SSS and HAYFRN fatigue rat-
ings from the first time of day (30 min after wake) were
examined in more detail because this time of day is likely the
most vulnerable to decrement when sleep and wake are
advanced. To examine whether these subjective ratings
30 min after waking differed between baseline and the 3 treat-
ment days and whether these ratings differed between melato-
nin and placebo conditions, we computed two (condition:
melatonin vs. placebo)-by-four (day: baseline, treatment day
1, 2, and 3) repeated-measures ANOVAs. The same analysis
was used to examine the daily Columbia Jet Lag Scale ratings
among baseline and treatment days and between melatonin and
placebo conditions. When the assumption of sphericity was
violated, Greenhouse–Geisser corrections were used, though
the original degrees of freedom are reported here.

Psychomotor vigilance and subjective sleepiness: acute
effects of melatonin vs. placebo

PVT median RTs, PVT optimal RTs, PVT lapses, SSS
ratings, and KSS ratings were collected at 1 h before the
pill (“pre-pill”), at pill time, at hourly intervals after the pill,
and at bedtime (5.75 h after the pill). Because these meas-
ures typically show high degrees of between-subjects vari-
ability (Van Dongen et al. 2004), each participant’s pre-pill
values were subtracted from values at each subsequent time
point. To examine the acute effects of 3.0 mg melatonin on
the PVT and SSS, we computed two (condition: melatonin
vs. placebo)-by-seven (time: 0, 1, 2, 3, 4, 5, and 5.75 h after
pill) repeated-measures ANOVAs. When the assumption of
sphericity was violated, Greenhouse–Geisser corrections
were used, though the original degrees of freedom are
reported here.

Results

Dim light melatonin onset phase shifts

Complete melatonin data were available for 11 participants.
The baseline DLMO occurred 3.0±0.9 h before baseline
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bedtime, and melatonin was administered 4.0±0.9 h before
the baseline DLMO on treatment day 1.

Baseline and final DLMOs and DLMO phase shifts for
each condition are illustrated in Fig. 2 and Table 1. The
baseline DLMO did not differ between the melatonin and
placebo conditions (Table 1; Fig. 2a), which shows that
circadian phase changes after one condition did not carry
over to the other condition. The DLMO advanced in both
conditions [time effect: F(1,10)037.86, p<0.001], but the
DLMO advanced more with melatonin than with placebo

[condition-by-time interaction: F(1,10)05.46, p00.042].
Adding melatonin to the gradual advance of the sleep sched-
ule shifted the DLMO an average of 38 min (±54 min) more
than placebo. Figure 2b, c shows that there was an overlap
in the amount of phase shift between the conditions, but no
participants delayed in the melatonin condition. Figure 2c
shows that the majority of participants (seven of 11)
advanced more in the melatonin condition compared to the
placebo condition.

Sleep

Actigraphic estimates of sleep are shown in Table 2. The
participants fell asleep soon after the lights were turned off
and woke up slightly before the lights were turned on during
baseline and during treatment days. Thus, they fell asleep
and woke up about 1 h earlier on each treatment day as
planned. There were no differences in total sleep time
between baseline and treatment days or between the mela-
tonin and placebo conditions. Therefore, we did not covary
total sleep time in subsequent analyses.

Subjective symptoms: baseline vs. treatment days

Figure 3 shows the SSS scores (Fig. 3a) and the physical
fatigue scores (Fig. 3b) from the HAYFRN questionnaire.
The participants were most sleepy and fatigued right after
waking and right before bed and less so in the middle of the
day. Significant time-of-day effects emerged for sleepiness
[F(3,33)028.00, p<0.001], physical fatigue [F(3,33)0
16.21, p<0.001], and mental fatigue [F(3,33)016.76, p<
0.001]. Polynomial contrasts showed that a quadratic trend
explained the pattern of change across the day for sleepiness
[F(1,11)069.62, p<0.001], physical fatigue [F(1,11)0
25.02, p<0.001], and mental fatigue [F(1,11)028.78, p<
0.001]. Sadness, anxiety, irritability, and gastrointestinal
distress did not change across the day.

SSS ratings differed between baseline and treatment days
[F(2,22)05.11, p00.015], though this difference was pri-
marily driven by ratings in the morning soon after waking.
Simple contrasts showed that 30 min after wake, the partic-
ipants reported more sleepiness during treatment days
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Fig. 2 DLMO phase shifts in response to a gradual advance of sleep
(1 h/day) with melatonin or placebo. a Average baseline and final
DLMOs, **p<0.01. b Individual phase shifts; mean phase shifts are
indicated by horizontal lines. c Lines are drawn to connect each
individual’s phase shifts. In b and c, positive numbers indicate phase
advances

Table 1 Circadian phase and phase shifts marked by the dim light
melatonin (DLMO) onset. The participants completed the melatonin
and placebo conditions in a counterbalanced order

Baseline DLMO Final DLMO Phase advance (h)
Mean (SD) Mean (SD) Mean (SD)

Placebo 21:24 (1:54) 20:42 (1:36) 0.7 (0.7)

Melatonin 21:22 (1:36) 20:02 (1:36) 1.3*(0.7)

*p<0.05 (significantly different from placebo)
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compared to baseline, regardless of whether they took mel-
atonin or placebo in the afternoons (p<0.001). Fatigue,
sadness, anxiety, irritability, and gastrointestinal distress
ratings from the HAYFRN questionnaire did not signifi-
cantly differ between baseline and treatment days.

A more detailed look at the sleepiness and fatigue ratings
taken 30 min after waking is shown in Fig. 4. The participants
became sleepier and more fatigued after waking as the

treatment days progressed. A significant treatment day effect
emerged for SSS [F(3,33)014.15, p<0.001], physical fatigue
[F(3,33)05.68, p00.003], and mental fatigue [F(3,33)03.80,
p00.045]. Simple contrasts show that the participants were
sleepier and more physically fatigued after waking on all
treatment days compared to baseline (p<0.05). Mental fatigue
(graph not shown) followed the same pattern. Sleepiness and
fatigue ratings were not significantly different between mela-
tonin and placebo conditions, though non-significant trends
emerged for SSS [F(1,11)04.38, p00.06] and physical fatigue

Table 2 Scheduled bedtime
(lights out) and scheduled wake
time (lights on) in 24-h clock
time and scheduled time in bed
in the dark (in hours). Sleep
onset, wake time, and total sleep
time were determined by wrist
actigraphy

Baseline, mean (SD) Treatment, mean (SD)

Day 1 Day 2 Day 3

Bedtime (lights out) 00:23 (1:00) 23:23 (1:00) 22:23 (1:00) 21:23 (1:00)

Placebo sleep onset 00:30 (1:00) 23:36 (1:00) 22:33 (1:00) 21:31 (0:54)

Melatonin sleep onset 00:30 (1:00) 23:28 (1:00) 22:28 (1:00) 21:30 (1:00)

Wake time (lights on) 08:23 (1:00) 07:23 (1:00) 06:23 (1:00) 05:23 (1:00)

Placebo wake time 08:16 (1:00) 07:18 (1:00) 06:17 (1:00) 05:18 (1:00)

Melatonin wake time 08:15 (1:00) 07:18 (1:00) 06:14 (1:00) 05:13 (1:00)

Time in bed in the dark 8.0 (0) 8.0 (0) 8.0 (0) 8.0 (0)

Placebo total sleep time 7.2 (0.4) 7.3 (0.4) 7.3 (0.3) 7.2 (0.5)

Melatonin total sleep time 7.2 (0.4) 7.3 (0.3) 7.2 (0.5) 7.2 (0.4)
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[F(1,11)04.26, p00.06], showing less morning sleepiness
and fatigue in the melatonin condition. Ratings of sadness,
anxiety, irritability, and gastrointestinal distress did not differ
among baseline and treatment days.

Subjective symptoms after waking did not differ between
melatonin and placebo conditions for any of the subjective
ratings at baseline, which suggests that elevated ratings of
sleepiness and fatigue experienced at the end of one con-
dition did not carry over to the next.

Columbia scale scores did not significantly change from
baseline to treatment days 1, 2, and 3 [time effect: F(3,33)0
1.51, p00.24]. A trend for a difference between conditions
[condition effect: F(1,11)04.58, p00.06] and a time-by-
condition interaction [F(3,33)02.43, p00.08] emerged;
Columbia scale scores did not differ between conditions at
baseline, but scores were slightly elevated in the melatonin
condition compared to the placebo condition.

Psychomotor vigilance and subjective sleepiness: acute
effects of melatonin vs. placebo

As illustrated in Fig. 5a, b, median RT and number of lapses
remained stable after taking the placebo pill and remained
close to pre-pill values (horizontal line at Y00). After ingest-
ing the melatonin pill, however, median RT slowed and lapses
increased, especially 1 h after ingesting the melatonin pill.
Optimal RT (data not illustrated) showed the same pattern as
median RT. A significant condition-by-time interaction
emerged for median RT [F(6,66)03.98, p<0.01], optimal
RT [F(6,66)02.98, p00.04], and lapses [F(6,66)02.87, p0
0.02]. Median RT [condition main effect: F(1,11)05.42, p0
0.04] and optimal RT [condition main effect: F(1,11)09.05,
p00.01] remained high for several hours after taking the
melatonin pill; post hoc comparisons between conditions
showed differences 1, 2, 3, and 5 h after the pill was taken.
A trend for a difference between conditions emerged for
lapses [condition main effect: F(1,11)04.22, p00.06].

Figure 5c shows that sleepiness increased from pill time
to bedtime in both conditions, but the participants rated
themselves as more sleepy after taking melatonin compared
to after taking placebo. A condition-by-time interaction
emerged for the SSS [F(6,66)03.10, p00.01] and the KSS
[F(6,66)04.64, p00.01]. Figure 5c illustrates that post hoc
comparisons between melatonin and placebo conditions for
the SSS were significant at every hourly assessment after the
pill was ingested until the scheduled bedtime. The KSS
ratings showed the same pattern.

Discussion

In our gradually advancing sleep/dark protocol, 3.0 mg of
afternoon/evening melatonin produced a slightly larger

circadian phase advance than placebo. The 1.3-h phase
advance with melatonin, however, was less than the 3-
h advance of the sleep schedule; thus, a small amount of
circadian misalignment was produced with both melatonin
and placebo. This small amount of misalignment did not
affect the sleep of these young adults as measured by actig-
raphy. They did, however, become sleepier and more
fatigued in the mornings as the treatment days progressed,
which is likely the result of waking up at an earlier circadian
phase than usual. This morning increase in sleepiness and
fatigue occurred regardless of whether they took melatonin
or placebo during the preceding afternoons/evenings,
though this is expected given the small phase differences
between the melatonin and placebo conditions. Finally,
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melatonin had side effects; sleepiness and performance dec-
rements were apparent after the pill was ingested in the
afternoon/evening, and these decrements persisted until bed-
time. Given the modest phase advance with melatonin and
the significant side effects, we cannot recommend taking
3.0 mg of melatonin alone with a gradually advancing sleep
schedule in order to phase advance the circadian clock.
Instead we continue to recommend using morning bright
light with the gradually advancing sleep schedule and per-
haps adding a smaller dose of afternoon/evening melatonin
(Eastman and Burgess 2009; Revell et al. 2006; Revell and
Eastman 2005, 2012).

The current study is one in a series with the overall goal
of testing methods to phase advance the circadian system
without producing circadian misalignment. All of these
studies advanced sleep/dark 1 h/day for 3 days. Taken
collectively, we can make a few general conclusions. First,
the average phase advance we observed in the placebo
condition of the current study (0.7 h) is similar to that of
our previous dim light “placebo” group (0.6 h) (Burgess et
al. 2003), which confirms that shifting sleep/dark earlier can
phase advance the system. Second, adding 3 mg of melato-
nin to the gradual shift of sleep/dark in the current study
increased the phase advance slightly (1.3 h) but descrip-
tively not quite as much as morning bright light, which
produced average advances of 1.5, 1.7, and 2.1 h (Burgess
et al. 2003; Revell et al. 2006). The largest advances (aver-
ages of 2.5 and 2.6 h) were produced by combining after-
noon/evening melatonin and morning bright light (Revell et
al. 2006). Thus, morning bright light or morning bright light
plus evening/afternoon melatonin is better than melatonin
alone to phase advance the system. Finally, these studies
provide support for the hypothesis, first proposed by Wirz-
Justice et al. (2004), that melatonin and light are additive in
their phase shifting abilities. The phase advance with 3.0 mg
of melatonin alone in the current study (1.3 h) added to the
advance with intermittent morning bright light alone (aver-
ages of 1.5 and 1.7 h) (Burgess et al. 2003; Revell et al.
2006) roughly adds up to the advance from combining
3.0 mg melatonin and morning intermittent bright light
(2.6 h) (Revell et al. 2006).

The relative contribution of shifting the sleep/wake
schedule and taking exogenous melatonin to the observed
phase advance was roughly equal in the current study.
Circadian rhythms advanced by 0.7 h after the gradual
sleep/dark schedule advance (the placebo condition) and
by 1.3 h when 3.0 mg of melatonin was added. Therefore,
melatonin increased the advance by roughly the same
amount (1.3–0.700.6). Other studies (Paul et al. 2010;
Rajaratnam et al. 2003; Sharkey and Eastman 2002) also
show this additive effect, and a descriptive trend emerges
such that phase advances are larger after more days of
advanced sleep timing and more days of melatonin

administration (1.0–1.3 h with 1 day of advanced sleep
and 1 day of melatonin administration (Paul et al. 2010),
3.0–3.9 h with 8 days of advanced sleep and 4 days of
melatonin administration (Sharkey and Eastman 2002),
and 5.3 h with 8 days of advanced sleep and 8 days of
melatonin administration (Rajaratnam et al. 2003)).

In the current study, the sleep schedule was advanced 3 h,
but circadian rhythms did not advance as much (1.3 h with
melatonin and 0.7 h with placebo), so a small amount of
circadian misalignment was produced. Greater sleepiness
and fatigue in the morning as treatment days progressed
indicate that this circadian misalignment was felt by the
study participants. Sleep, mood, and gastrointestinal prob-
lems, however, were not affected. If the advancing sleep
schedule continued, then the amount of circadian misalign-
ment would have increased and would likely have conse-
quences for sleep, mood, and performance. The degree of
circadian misalignment necessary to observe a negative
impact on these measures remains unclear however, and it
may depend on the measured outcome and whether mis-
alignment is chronic or acute. We continue to suggest that a
gradually advancing sleep/wake schedule in combination
with afternoon/evening melatonin and morning bright light
is the best way to advance the circadian system without
producing circadian misalignment.

It is possible that if we had used a smaller dose of
melatonin in the current study the same circadian phase
advance would have been produced, but without the side
effects of sleepiness and impaired performance seen with
the 3.0-mg dose. In our previous study (Revell et al. 2006),
sleepiness, measured by the SSS, between taking the 0.5 mg
melatonin pill in the afternoon/evening and bedtime did not
differ from placebo. Similar to the current study, however,
sleepiness (SSS) was elevated after taking 3.0 mg of mela-
tonin compared to placebo, though in this previous study the
difference did not reach statistical significance even though
the increase in sleepiness was about the same amount (one
point on the SSS). The lack of significance was probably
due to the between-subjects design, whereas the current
study was a within-subjects design, which increased our
ability to detect a difference between melatonin and placebo.
The finding that melatonin makes humans sleepy is not new
(Arendt et al. 1984; Cajochen et al. 1996, 1997; Deacon et
al. 1994; Dollins et al. 1993, 1994; Nickelsen et al. 1989;
Rogers et al. 2003; Tzischinsky and Lavie 1994; Yang et al.
2001) and accounts for melatonin’s popularity as a sleep aid.
Given the dose-response relationship for sleepiness (Dollins
et al. 1994), it is best to use the lowest possible dose when
melatonin is not taken at bedtime.

In the current study, reaction times lengthened and lapses
increased on the PVT in the hours between taking the
melatonin pill and bedtime compared to placebo. These
decrements were most pronounced in the first hour after
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taking the melatonin pill, but impairment persisted until
bedtime. These data mimic previous studies (Dollins et al.
1993, 1994; Rogers et al. 2003) and further emphasize the
need to caution those who take melatonin in the afternoon or
evening not to drive or engage in an activity that requires
full alertness, even if relatively low doses are taken.
Although one noteworthy study did not find an adverse
effect on driving performance after ingesting 5 mg of mel-
atonin (Suhner et al. 1998), a significant increase in sub-
jective sleepiness emerged, which led the authors to
similarly conclude that caution should be used when driving
after taking melatonin.

There are several reasons to believe that if we had used
the lower dose of melatonin in the current study (e.g.,
0.5 mg) the same phase advance would have been produced
as with 3.0 mg. One of our previous studies (Revell et al.
2006) showed no difference in phase advance between 0.5
and 3.0 mg afternoon/evening melatonin when combined
with the 1-h/day gradually advancing sleep/dark schedule
plus intermittent morning bright light. Our melatonin PRC
studies (Burgess et al. 2008, 2010) also showed no differ-
ence in the magnitude of advances between the 0.5- and 3.0-
mg doses. Finally, another study of ours (Sharkey and
Eastman 2002), to be discussed in more detail later, did
not find a significant difference in the magnitude of phase
advance with 3.0 mg compared to 0.5 mg. It should be noted
that Deacon and Arendt (1995) reported a dose-response
relationship for phase advancing with melatonin. When
administered 7 h before bedtime, the phase advance in the
DLMO was 0.36 h with 0.05 mg, 0.69 h with 0.5 mg, and
1.43 h with 5.0 mg. A significant difference emerged
between the 0.5- and 5.0-mg doses, but not between the
0.05- and 0.5-mg doses. Perhaps this was because the dose
difference (in mg) between 0.5 and 5.0 mg of melatonin was
much greater than between the 0.05- and 0.5-mg doses. It
was also greater than between our two doses (0.5 and
3.0 mg). Another possibility for the apparent dose response
found by Deacon and Arendt emerges from our melatonin
PRC studies. The optimal time to produce advances is ear-
lier for the larger dose, and perhaps 7 h before bed was a
good time for the 5-mg dose, but less so for the 0.5- and
0.05-mg doses.

The optimal timing of melatonin to produce phase advan-
ces according to our 3.0 and 0.5 mg melatonin PRC studies
is 10–11 h before the midpoint of the usual sleep episode
(Burgess et al. 2010). Specifically, for 3 mg the optimal time
is about 11 h before mid-sleep time (Burgess et al. 2010) or
about 5 h before the DLMO (Burgess et al. 2008). We gave
the melatonin 11 h before mid-sleep time, which when
examined post hoc was 4 h before the baseline DLMO on
the first treatment day. On subsequent days, the time of
melatonin administration was 1 h earlier each day, but the
DLMO advanced much less. Therefore, the pill was given

earlier and earlier relative to the DLMO. Thus, we were
successful in timing the melatonin pill to occur around the
peak of the phase advance portion of the PRC.

In another study designed to phase advance circadian
rhythms (Sharkey and Eastman 2002), we obtained much
larger phase advances than in the current study. The partic-
ipants ingested 3.0 mg of melatonin, 0.5 mg of melatonin, or
placebo 11.5 h before baseline mid-sleep time (7.5 h before
baseline bedtime). The DLMO advanced 3.9 h with 3.0 mg
melatonin, 3.0 h with 0.5 mg melatonin, and 1.7 h with
placebo. The phase advances with melatonin were much
larger than in the current study and even larger than in our
previous study in which morning bright light was used in
combination with melatonin (Revell et al. 2006). There are
several reasons that could account for the larger phase
advances in the Sharkey and Eastman (2002) study. Most
importantly, sleep/dark was abruptly advanced by 7 h,
whereas in our other studies sleep/dark was advanced 3 h
and the advance was gradual (1 h/day) to avoid the circadian
misalignment caused by large, abrupt shifts of the sleep
period. The large, abrupt advance of sleep/dark, however,
undoubtedly exerted a stronger “pull” on the circadian clock
than the smaller, gradual advance. Also, there were 4 days of
melatonin administration in the Sharkey and Eastman study
and only 3 days in the current study and our more recent
study (Revell et al. 2006). Lastly, final circadian phase was
measured after eight advanced sleep/dark periods,
whereas in our other studies it was measured after only
three. The acute side effects of sleepiness and reduced
vigilance after taking melatonin were avoided in the
Sharkey and Eastman study because the participants went
to bed after taking the melatonin. When placebo was
taken before bed instead of melatonin (last four of the
eight advanced sleep episodes), however, sleep duration
was reduced presumably because there was still a large
amount of circadian misalignment (the DLMO advanced
3–4 h, whereas the time for sleep advanced 7 h). Future
research is necessary to determine the pros and cons of
abrupt vs. gradual advance shifts of sleep using more
comparable protocols (e.g., same magnitude of advance
in sleep; same dose and timing of melatonin; same
measures of sleepiness, mood, and performance, etc.).

The phase advancing properties of melatonin can be used
to attenuate the chronic “social jet lag” that many experience
as well as to help extreme evening types (night owls) and
people with DSPD adopt an earlier sleep schedule. Several
studies have shown phase advances in the DLMO and sleep
onset time of people with DSPD in response to exogenous
melatonin as summarized in a recent meta-analysis by van
Geijlswijk et al. (2010). A pilot study (Mundey et al. 2005)
showed that DLMO advances depend on the time of mela-
tonin administration relative to the baseline DLMO, with
larger advances in response to the earliest administration
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times (~ 6.5 h before the DLMO). These data agree with our
PRCs to melatonin (Burgess et al. 2008, 2010). To our
knowledge, there have been no studies in which our method
for producing circadian phase advances (gradually advanc-
ing the sleep schedule, morning bright light and afternoon/
evening melatonin) was used to advance the clocks of people
who find it difficult to fall asleep as early as demanded by their
work, family, or social obligations. This would require a few
days with no morning time commitments in order to start with
the natural “delayed” time for sleep before gradually advanc-
ing it. Then maintenance would be required, consisting of a
fixed sleep/dark period even on weekends, continued melato-
nin administration, and at least occasional morning bright
light to prevent the circadian clock from delaying back to its
normal delayed circadian phase.

Melatonin is a popular remedy for jet lag partly because
of its sleep-inducing effects and partly because of its phase
shifting effects (Arendt 2009; Revell and Eastman 2012;
Sack et al. 2007). Melatonin can hasten the phase advance
needed to adjust to a new time zone when flying east, but if
it is only taken after landing, then there will still be a large
degree of circadian misalignment, and thus jet lag, until the
system entrains to the new time zone. To reduce or even
eliminate jet lag, we recommend phase advancing circadian
rhythms with a gradually advancing sleep schedule plus
morning bright light and afternoon/evening melatonin before
flying (Crowley and Eastman 2012; Eastman and Burgess
2009; Revell and Eastman 2012).
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